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Abstract

A multifunctional interface method with
capabilities for variable-fidelity modeling and multiple
method analysis is presented.  The methodology
provides an effective capability by which domains with
diverse idealizations can be modeled independently to
exploit the advantages of one approach over another.
The multifunctional method is used to couple
independently discretized subdomains, and it is used to
couple the finite element and the finite difference
methods.  The method is based on a weighted residual
variational method and is presented for two-
dimensional scalar-field problems.  A verification test
problem and a benchmark application are presented,
and the computational implications are discussed.

Introduction

Accurate response characterization is needed early
in the design and analysis cycle to investigate rapidly
novel and revolutionary aerospace and ground vehicle
design concepts.   Mathematical modeling
approximations are considered that range from simple
handbook equations, empirically derived relations,
spreadsheets, and design charts to complex continuous
and discrete simulation models.  Integrated
computational methods with multiple capabilities and
with diverse engineering applications provide the
enabling technologies to assimilate variable-fidelity,
multi-disciplinary data rapidly at an early stage in the
design.  These methods allow rapid design trade-offs
between cost and performance.  Based on the insight
provided by these simulations, design uncertainties and
risk assessment may be evaluated.   Moreover,

methodology that allows different mathematical
modeling approximations of the physical phenomena
and among multiple engineering disciplines can be very
advantageous.

One class of methods for obtaining the desired
modeling flexibility in the analysis of complex systems
that has received recent attention is generally called
interface methods.  These methods, through the
subdivision of a single domain into multiple
subdomains, are used to couple independently
discretized models or to couple different mathematical
modeling methods or approximations, and exploit the
advantages of one approach over another.  Examples of
methods that couple different independently discretized
models include global/local approaches1-4 and finite
element coupling methods5-10.  Examples of methods
that couple different modeling methods include finite
element and boundary element methods11-14, finite
element and Rayleigh-Ritz approximations15, finite
element and finite difference methods16,17, finite
element and analytical solutions18, and finite element
and equivalent plate solutions19.   These interface
methods facilitate the discretization of geometry by
providing a capability to model independently the
regions of interest, increasing the discretization fidelity
or enhancing the mathematical approximation only in
desired domains.  A major feature of the methods is the
accurate mapping of field quantities across the
respective interface, whether the interface is one among
diverse mathematical approximations or among diverse
disciplines.   Many of the interface methods are specific
to a single spatial modeling approach (i.e., finite
element method) or discipline, which limits their
applicability to a wide range of applications in
engineering science.

This paper presents a multifunctional interface
method with capabilities for variable-fidelity modeling
and multiple method analysis.  An interface method
referred to in the literature as interface technology9,10

was developed for coupling independently discretized
finite element models and is well suited for extensions
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to multiple method and multidisciplinary analysis.
Therefore, the interface technology is the concept upon
which the multifunctional capability presented in this
work is built.  The basic concept of the interface
technology was discussed by Housner and Aminpour 9

and subsequently, developed, implemented and
validated by Aminpour et al.10, and Ransom et al. 20.
The method has been shown to be computationally
efficient while preserving solution accuracy, however,
its demonstration has been limited to solid mechanics
problems.

The purpose of this paper is to investigate
multifunctional interface methods, as described herein
that address the engineering design and analysis needs
of multidisciplinary problems in engineering science.
Fundamental relationships will be discussed among
underlying engineering science and mechanics
principles, computational methods, variable-fidelity
models, and multiple methods using basic two-
dimensional scalar-field problems from continuum
mechanics.  A multifunctional approach for scalar-field
problems is developed, described, and demonstrated on
problems in engineering science.  A multifunctional
formulation is presented along with a discussion of the
spatial modeling and the computational implications.
The multifunctional method is used to couple
independently discretized subdomains and to couple the
finite element and the finite difference methods.
Numerical results for a verification test case and a
representative scalar-field problem are presented.

Overview of the Multifunctional Approach for
Scalar-field Problems

Methods of approximation such as Ritz, Galerkin,
and other weighted residual methods are based on weak
statements of the differential equations governing the
system response.  The scalar-field problem is a basic
form of the governing differential equations; and thus,
it lends itself to forming the mathematical foundation
for the general methodology developed herein.
Representative examples of scalar-field differential
equations in two dimensions are considered, and the
mathematical statement of the multifunctional approach
is formulated.

The general form of the differential equation
describing a scalar-field problem for domain Ω (see
Figure 1(a)) is given by the Poisson equation, which is
of the form

                        ( ) Ω=∇⋅∇− in      Quk                        (1)

subject to the natural boundary condition,

( ) quuh
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components of the outward normal vector, n, to the
bounding surface, Γ, of domain, Ω.  In Eq. (1), the
variables k and Q are known coefficients, and the
primary variable or dependent variable is u, which is a
function of the independent variables, x and y.  In the
natural boundary condition, the variables, h and u∞, are
the convection coefficient, and the far-field value of the
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 are the secondary variables that may be described

on a portion of the boundary, sΓ .  The primary

variable, u, is specified on the boundary, pΓ , and its
prescription to the boundary value, u , constitutes the
essential boundary condition.  The complete boundary

is defined as sp Γ+Γ=Γ .
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(b) Boundary Definitions for subdomains

Figure 1. Geometric Representation  and Boundary
Definitions of Two-Dimensional Domain.

Equations of the type of Eq. (1) arise in many
fields of engineering science such as elasticity, heat
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transfer, fluid mechanics, and electrostatics.  Reddy21

has tabulated several examples of engineering fields in
which the analytical description of the physical process
is described by Eq. (1).  In this paper, the Poisson
equation is applied to selected problems in the solid
mechanics.

Multifunctional Formulation
The method of weighted residuals is used

extensively in fluid mechanics; and thus, the potential
problem is formulated from this perspective.  The
general weighted residual formulation for a single
domain is presented in reference 22.  The
multifunctional formulation provides a capability to
subdivide a domain into multiple, independently
idealized subdomains, which allows the use of
independently generated models, multiple levels of
spatial discretization, and different mathematical
approximations among the subdomains.  These
attributes facilitate the use of higher localized fidelity
for increased solution accuracy and the ability to
capitalize on the advantages of one mathematical
approximation compared to another.  The method is
quite similar to the subdomain collocation approach in
which a domain is divided into subdomains, and the
residual is made orthogonal to a weight function and set
to zero in an integral sense over each subdomain.  Here,
methodology is presented formulating the general
method of weighted residuals for multiple domains by
considering the Poisson equation, Eq. (1) for a two-
dimensional domain for the field variable, u.

For simplicity, the multiple-domain formulation is
presented for two subdomains, Ω1 and Ω2 (see Figure
1(b)).  Independent approximations and weight
functions are assumed in each of the subdomains and
continuity conditions are used to provide for a
continuous solution across the subdomain interfaces.
Thus, Eq. (1) is satisfied in each subdomain,
independently, i.e.,

( )  in     iiii Quk Ω=∇⋅∇−

or for uniform constant, k, in each subdomain

 in     2
iiii Quk Ω=∇−

subject to the boundary conditions on the subdomain
boundaries, Γi.

As a result of the subdomain modeling, the solution
of the problem involves an interior surface interface

boundary, I iΓ , and the information transfer across the

boundary.  Hence, the boundary surface for the ith

subdomain is given by I i
s
i

p
ii Γ+Γ+Γ=Γ .  The

boundary conditions for the ith subdomain may be
written as

s
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d
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The residual, iiii QukR −∇−= 2 , for each domain is

orthogonalized by a set of weight functions, Φi which
yields

( ) 0d 2 =Ω∫ −∇−
Ω
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where the approximate solution, iu~ , is sought.  Using

the general form outlined in reference 22 for the single-
domain formulation and considering an approximate
solution, iu~ , that automatically satisfies the essential

boundary conditions, we may write the general integral
form of the differential equation governing the potential
flow for subdomain i as
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 and the residual in the

satisfaction of the natural boundary conditions is
orthogonalized by a secondary set of weight
functions i .

The order of differentiation on the primary variable
in the integral equations, Eq. (2), is reduced to obtain
the weak formulation.   In addition, for simplicity in the
subsequent development, the tilde, (~), denoting the
approximated values of the primary variables, u1 and u2,
will be omitted.  Utilizing the divergence theorem, Eq.
(2) can be rewritten, for subdomain i, yielding
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Recall that the boundary integral on Γi, may be
expressed as the sum of boundary integrals associated
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with the specified primary variable, p
iΓ , specified

secondary variable, s
iΓ , and the interior surface

interface boundary, I Γ , with 0=i on p
iΓ .  Moreover,

since i  and i , are arbitrary, they may be chosen,

such that, ii = .  Thus, Eq. (3) can be rewritten, for

subdomain i, as
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To enforce interdomain continuity on the primary

variable, a boundary condition on the boundary, IΓ , is
used by introducing a third approximation field in terms
of an additional primary variable, v, (see Figure 1(b))
which gives rise to the continuity requirement

I
1 on          0 Γ=−uv    and   I

2 on          0 Γ=− uv .

These constraints can be satisfied in the integral sense
as

( ) II
11 on          0 d

I
Γ=Γ∫ −

Γ
uvλ

and

( ) II
22 on         0d 

I
Γ=∫ Γ−

Γ
uvλ              (5)

where 1λ and 2λ are Lagrange multipliers or weight

functions related to the secondary variable along the
interface.  To enforce reciprocity of the secondary
variable (i.e., fluxes or tractions) along the common
subdomain boundary, an additional continuity
requirement is specified.  These secondary variables,

1q̂ and 2q̂ , are assumed to be independent of each

other.  These independent approximations give rise to
continuity requirements along the interface

I
21 on          0ˆˆ Γ=+ qq .

These constraints can be satisfied in the integral
sense as

                        ( ) II
21 on         0d ˆˆˆ

I
Γ=∫ Γ+

Γ
qqλ           (6)

where λ̂  is a Lagrange multiplier or weight function
related to the primary variable along the interface.  The
integral form of Eqs. (4), (5), and (6) provides the basis
for the subsequent spatial modeling approximations.
The multifunctional approach developed provides a

mechanism for coupling subdomains that have been
discretized with diverse spatial modeling approaches.
Of the many spatial modeling approaches, this paper
will focus on the finite element and the finite difference
methods and their associated coupling using the
multifunctional approach developed.

Eqs. (4), (5), and (6) are used to provide the
mathematical basis for the development.  In previous
work by Aminpour et al.10, a similar formulation based
on the principle of minimum potential energy is
developed and subsequently implemented in the form
of an element20.  In that work as is the case in this
study, the interdomain interface boundary is discretized
with a mesh of evenly-spaced pseudo-nodes (open
circles in Figure 2) that need not be coincident with any
of the interface nodes (filled circles in the figure) of any
of the subdomains.  In this paper, the methodology has
been extended further to encompass diverse types of
spatial modeling methods as is indicated conceptually
in Figure 2.

x

y

Γ1
I

Pseudo-nodes

Interface

Finite element
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Finite difference
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Figure 2.  Interface Definition.

The generalized element equations may be
obtained by introducing the continuity requirements
into the weighted residual statement.  Eqs. (4), (5), and
(6) can be rewritten over an element domain as
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Note that in the potential energy formulation10, the
continuity of the secondary variables is satisfied
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through the subsidiary conditions obtained through the
minimization of the potential energy.  In this weighted
residual formulation, the continuity of the secondary
variables is satisfied in a weighted residual sense and

the Lagrange multipliers, iλ and λ̂ , are represented by

weight functions related to the secondary and primary
variables, respectively.

The form of the equations for finite element and
finite difference field approximations differs by the
form of the element shape functions and the
approximation selected for the weight functions, .  For
the generalized element expansion of subdomain i, the
independent approximations for the element primary
variables, (i.e., displacements or velocities), interface
secondary variables (i.e., tractions or fluxes), the weight
functions associated with the primary and secondary
variables, and the interface variables are, respectively

I  and
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where i  is a vector of unknown coefficients

associated with the secondary variables, iq̂ ,  and Ni, Ri,

and T are matrices of interpolation functions for the
element primary and secondary variables, and the
primary variables along the interface, respectively.  The
interpolation functions in the matrices Ri are assumed
to be constants for linear elements and linear functions
for quadratic elements.  The interpolation functions in
the matrix T are cubic spline functions.  Substituting
these approximations into Eqs. (7) yields integral
equations in terms of the weight function, , which are
given by
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Moreover, integration over the common subdomain
boundary, ΓI, is considered only for element edges
along that boundary.

Assembling the element equations over the entire
domain, enforcing continuity of the primary and
secondary variables only within each subdomain and
assembling the contributions along the element edges
on the common subdomain boundary, and noting that

1eu and 
2eu , and 
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2ef , and 1  and 2  are

completely uncoupled, yields the system of equations
given by



























=

















































0

0

0

f

f

u

u

u

00KK0

00K0K

KK000

K00K0

0K00K

2

1

2

1

I

2

1

T
Ip

T
Ip

II

s2

s1

22

11

21

2

1

or symbolically      














=






























0

0

f

u

u

0KK

K00

K0K

T
I

Ip

I

s

       (8)

where K, u, and f are the assembled stiffness matrix,
vector of primary variables and force vector for the
entire structure, and Kp, Ks, KI, uI, and  are the
assembled Kpi

, Ksi
, KIi

, uI, and i for all interfaces.  Eq.

(8) is obtained from the individual weighted residual
expressions over each of the subdomains and the
constraint integrals.
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Multiple-Domain Modeling - Homogeneous
Discretization

In the context of this work, homogeneous
discretization approaches make use of a single
discretization method among all subdomains in which
the domain is subdivided.  For the finite element
development, the weight functions are taken to be the
finite element shape functions (i.e.,  ii N= ).  For the

finite difference development, the weight functions are
taken to be the Dirac delta function (i.e.,

( ) , iiii yyxx −−= δ ).  Thus, stiffness matrices,

iek and 
isk , and force vector, 

ief , are given in terms of

the weight functions.  The form of the coupling element
matrices, 

ipk and 
iI

k , that are not in terms of the

weight functions are independent of the method of
discretization.  That is,
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e
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are of the same form for the finite element and finite
difference discretizations.  However, since the element
shape functions, Ni, differ for the two methods, the
interface matrices, 

ipk , in general, are not identical.

Moreover, in the finite element development, at the

element level T
ps ii

kk = , and at the global system level

T
ps ii

KK = .  By contrast, in the finite difference

development, at the element level T
ps ii

kk ≠ , and at the

global system level T
ps ii

KK ≠ .  Hence, for the finite

difference method, the global system level matrices are
not symmetric.  The multifunctional derivation is
general as it allows for the coupling of the primary
variables to an independent approximation.  This
attribute is particularly important in the heterogeneous
discretization approach described in the next section.

Multiple-Domain Modeling - Heterogeneous
Discretization

Heterogeneous discretization approaches make use
of different discretization methods for at least two of
the subdomains in which the domain is subdivided.
There are many combinations of spatial modeling
approaches; however, this work focuses on the coupling
of the finite element and finite difference methods.  The
multifunctional weighted residual formulation of Eq.
(8) is used.  Considering two domains, shown in Figure
1(b), subdomain 1 is assumed to be discretized using
the finite element method, and subdomain 2 is assumed
to be discretized using the finite difference method.
The set of element matrices becomes a hybrid of the
matrices from the finite element method and the finite
difference method, and
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The multifunctional modeling approach has been
generalized such that it is applicable to both
homogeneous and heterogeneous discretization
approaches.

Computational Implications
Computational implications are discussed for the

generalized system of equations, Eqs. (8).   Implications
specific to a discretization approach are highlighted,
where appropriate.  The assembled stiffness matrix K is
a block diagonal matrix containing the stiffness
matrices Ki of each of the subdomains along its block
diagonal.  The interface “stiffness” matrix thus contains
coupling terms that augment the stiffness matrices of
the subdomains along the interface.  Due to the use of
Lagrange multipliers in the constraint conditions, the
systems are neither banded nor positive definite.
Therefore, standard Cholesky solvers can not be used,
unless pivoting is performed to obtain the solution.  In
addition, due to the generalization for the finite
difference approximations, the system of equations is
not necessarily symmetric due to different off-diagonal
submatrices, Kp and Ks.  The system unknowns in Eq.
(8) consist of both primary and secondary variables
given by the potential function, u, and the secondary
variable coefficients, , respectively.  Generally, the
terms in the coupling matrices, 

isK , are of the

magnitude of the length of the interdomain boundary,
which results in a marked difference in the magnitude
of the off-diagonal terms of the system matrix
compared to its diagonal terms.   This characteristic
produces an ill-conditioned matrix whose solution can
cause numerical difficulties for some general-purpose
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solvers.  Hence, the coupling matrix should be scaled
such that its terms are of the same magnitude as the
subdomain stiffness.  The upper diagonal submatrix
blocks contain uncoupled subdomain stiffness matrices.
The symmetry of the subdomain matrix is determined
by the choice of the weight function, Φ.  For the finite
element discretization, the subdomain matrices are
symmetric.  However, due to the elimination of
fictitious nodes for the imposition of boundary
conditions and loads in the finite difference
discretization, the subdomain stiffness matrices, Ki,
generally are not symmetric, but they are positive
definite and sparse.  The coupling is accomplished
through the introduction of the terms in the matrices,

ipK , 
isK , and IK .  The number of additional degrees

of freedom associated with the interface is generally
small in comparison with the total number of degrees of
freedom in the subdomains.  Thus, modeling flexibility
is provided at a relatively small computational expense
that may be reduced additionally as the efficiency of
new solution algorithms for the system of equations in
Eqs. (8) is increased.

Numerical Results

The multifunctional methodology for the two-
dimensional scalar-field problem is demonstrated on a
verification patch test case and a benchmark problem
(i.e., a torsion problem).  The applications are
described, and the associated results and salient features
are discussed.  Finite difference and finite element
solutions for single- and multiple-domain
configurations are presented to provide benchmark
solutions for the multifunctional approach using
homogeneous and heterogeneous spatial discretizations.
The finite element models use four-node Lagrange
isoparametric finite elements, and the finite difference
models use a five-point template to approximate the
governing differential equation.  A general-purpose
finite element code, COMET/AR23, is used to generate
the finite element stiffness matrices.  The mathematical
computing program MATLAB  is used to generate the
finite difference matrices and the interface coupling
matrices and to solve the resulting system of equations.

Patch Test Problems
The fundamental concept of the patch test for the

scalar-field problem herein is to subject a domain to
boundary conditions that engender a linear or quadratic
primary variable field and a constant or linear
secondary variable field throughout the domain.  For
the governing differential equation of the form of Eq.
(1), boundary conditions that serve this purpose are:

i) Specified primary variable on pΓ  which emanate
from a linear potential field as

021 ayaxau ++=
or a quadratic field as

( ) 032
22

1 ayaxayxau +++−=
where a

1
, a

2
, a

3
,and a

0
 are arbitrary constants.

ii) Specified constant or linear secondary variable on
sΓ

021 bybxbq ++=
where b

1
, b

2
, and b

0
 are arbitrary constants.

Consider the solution for the primary variable,
u(x,y), in a rectangular domain  (see Figure 3(a)) with
boundary conditions of the forms indicated that yield
the exact solution.  The problem is given by Laplace’s
equation for a planar domain as

byax
y

u

x

u <<<<=
∂
∂+

∂
∂

0          ,0         ,0
2

2

2

2

.

(a) Domain Geometry

 (b) Spatial Discretization

Figure 3.  Two-Dimensional Rectangular Domain
Geometry and Spatial Discretization.

x

y

(a,b)

q=h(x,y)

q=e(x,y)

u = f(x,y) u = g(x,y)

y

x
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Table 1.   Results of the Multifunctional Approach for the Patch Test Problems.

Normalized Potential Function, u Normalized Flux, qx

Order of Potential function Order of Potential FunctionAnalysis
Type*

Linear Bilinear Quadratic Linear Bilinear Quadratic
SD/FE 1.0 1.0 1.0 1.0 1.0 1.0
SD/FD 1.0 1.0 1.0 1.0 1.0 1.0
MD/FE 1.0 1.0 1.03 1.0 1.0 1.03
MD/FD 1.0 1.0 1.0 1.0 1.0 1.0
MD/HM 1.0 1.0 .99 1.0 1.0 .99
* SD/FE:  Single-Domain with Finite Element discretization
  SD/FD:  Single-Domain with Finite Difference discretization
  MD/FE:  Multiple-Domain with Finite Element discretization
  MD/FD:  Multiple-Domain with Finite Difference discretization
  MD/HM:  Multiple-Domain with Heterogeneous Modeling (combined finite difference and

finite element discretizations)

Specified boundary conditions representing linear,
bilinear, and quadratic potential fields are applied to the
square domain.  These boundary conditions are given as

Linear field:

0),()0,(

 and  ,2),(,2),0(

==
+==

bxqxq

ayauyu

nn

Bilinear field:

1),(  and  ,1- )0,(

 and   ,),( ,),0(

==
+==

bxqxq

yayauyyu

nn

Quadratic field:

bbxqxq

yayauyyu

nn 2),(  and  ,0)0,(

 ,),(     ,),0( 222

−==
−=−=

Single-domain and multiple-domain spatial
modeling approaches are used to analyze the problem.
Two single-domain models are developed each using
either finite element or finite difference discretization
(denoted by SD/FE and SD/FD) over the entire domain.
Two multiple-domain models are developed using
homogeneous modeling each using either finite element
or finite difference discretization (denoted by MD/FE
and MD/FD) in each of the subdomains.  For
convenience, the finite element and finite difference
discretizations have the same number of nodes or grid
points in each of the coordinate directions in the
respective subdomains.  A multiple-domain model
using heterogeneous modeling (denoted by MD/HM) is
developed with finite difference discretization used in
one subdomain and finite element discretization used in
the other subdomain.  For the spatial modeling
approaches, the syntax  (m × n) denotes a mesh with m
grid points in the x-direction and n grid points in the y-
direction.  For the single-domain modeling approaches,
the entire domain is discretized using a (5 × 5) grid
point mesh.

For the multiple-domain analyses, a (3 × 5) grid point
mesh is used in the less refined (coarse) subdomain and
a (5 × 9) grid point mesh is used in the more refined
subdomain as shown in Figure 3(b).  Hence, the more
refined subdomain has a grid point spacing in the x- and
y-directions that is half the size of the spacing used in
the coarse subdomain.

Results of the analyses performed have been
compared to the exact solution for the given boundary
conditions and are summarized in Table 1 using
normalized values.  A value of unity implies perfect
agreement with the reference solution.  Values above
and below unity indicate error in the computed solution.
For boundary conditions consistent with linear and
bilinear potential fields, the computed potential and flux
results are exact for all analysis types.  For boundary
conditions consistent with a quadratic potential
function, the error in the computed potential and flux is
approximately 3% for the multiple-domain
homogeneous finite element (MD/FE) spatial modeling,
and the error is approximately 1% for the multiple-
domain heterogeneous modeling (MD/HM) with
combined finite element and finite difference
discretization.  For the given boundary conditions and
element configuration (i.e., square or rectangular
elements), the single-domain finite element (SD/FE)
model reproduces the exact solution using the bilinear
finite element.  However, for a general element
orientation (i.e., quadrilateral elements), the bilinear
element used does not reproduce the exact solution.
Moreover, for this problem in the multiple-domain
analysis, error is introduced when combining finite
element models of different discretization along the
common boundary.  However, no error is introduced
when combining finite different models of different
discretization along the common boundary.
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These results indicate that, for this problem, the
finite difference solution better approximates the
quadratic potential function.  As such, the error
obtained using the heterogeneous model (combined
finite difference and finite element discretization) is
smaller than the error obtained for the homogeneous
finite element model.

Representative Benchmark Problem

The multifunctional methodology is demonstrated
on a representative two-dimensional scalar-field
application.  This application is a second-order problem
of solid mechanics (i.e., a torsion problem) that can be
formulated in terms of one dependent variable (see
reference 22 for additional problems).

The torsion of a prismatic bar with a rectangular
cross-section is used to demonstrate the multifunctional
capabilities of the developed methodology.  The torsion
problem reduces to the nonhomogeneous partial
differential equation

θφφ
G

yx
2

2

2

2

2

−=
∂
∂+

∂
∂

in which the stress function, φ , must be constant along

the boundary of the cross section, θ is the angle of twist
per unit length of the bar, and G is the shear modulus.
The configuration of the bar is shown in Figure 4, and
the analysis domain and the boundary conditions, are
shown in Figure 5(a).

Mt

Mt

x,u

y,v

z,w

Figure 4.  Prismatic Bar with Rectangular Cross-
Section.

Due to the symmetries in the problem, only one
quadrant of the rectangular cross-section needs to be
considered.  Moreover, this symmetric model is useful
in verifying the application of mixed boundary
conditions.  That is, the application of boundary
conditions in terms of both primary and secondary
variables.  The quadrant considered in the symmetric

model is shown by the gray shaded region in Figure
5(a) and in an enlarged view in Figure 5(b).

y

x

2a

2b

0=φ
0φ

0=φ

0=φ

0=φ

(a) Entire Model

y

x
a

b

0=φ
0

0=
∂
∂

x

φ

0=
∂
∂

y

φ

0=φ

(b) Symmetric Model

Figure 5.  Analysis Domains and Boundary Conditions
for Prismatic Bar with Rectangular Cross-Section.

The shear stresses in the cross-section are

xy zyzx ∂
∂−=

∂
∂= φτφτ             , .

At the ends of the bar, the first moment integrated over
the cross-sectional area must equal the twisting
moment.  This requirement gives

∫= dxdyM φ2t

The analytical solution24 for the stress function and
twisting moment are given, respectively, by

( )( ) ( )
( ) a

xn

abn

ayn

n

aG n

n 2
cos

2/cosh

2/cosh
11

132 21

,...5,3,1
33

2 π
π
π

π
θφ 








−−∑= −∞

=

and
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( ) ( ) 
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
∑−=
∞

= ,...5,3,1
55

3
t 2

tanh
1192

122
3

1

n a

bn

nb

a
baGM

π
π

θ .

Spatial Modeling of Prismatic Bar
Analyses are performed for the case of b=2a (i.e.,

rectangular cross-section), where a and b are
dimensions of the cross-section shown in Figure 5(b).
Three levels of grid refinement are used for the spatial
modeling, namely meshes of (6 × 6), (11 × 11), and (21
× 21) grid points, each applied to the domain shown in
Figure 5(b).  A typical idealization for a (6 × 6) mesh of
grid points is shown in Figure 6(a).  Multiple-domain
analyses with the spatial modeling of these three levels
of grid refinement and with coincident nodes along the
common subdomain boundary have been performed for
comparison.  For the multiple-domain spatial modeling
with non-coincident nodes along the common
boundary, the mesh discretization of the most refined
domain is consistent with the discretization used in that
same region for the single-domain analysis.  The mesh
in the less refined domain has half the “element”
density of that used in the refined domain.  The mesh of
the entire domain is shown in Figure 6(b) and is
referred to by the syntax (6 × 11)/(11 × 21).

(a) Single-Domain (6 × 6) Mesh

 (b) Multiple-Domain (6 × 11)/(11 × 21) Mesh

Figure 6. Spatial Discretization for One Quadrant of
Prismatic Bar with Rectangular Cross-Section

Twisting Moment for the Prismatic Bar
Having found the values of the stress function, φ ,

at the grid points in the solution domain by the
respective spatial discretization approaches, the twisting
moment may be found by repeated application of the
trapezoidal rule for numerical integration.  The
computed twisting moment, tM , is normalized by the

analytical solution, analyticaltM , and is given in Table 2.

A value of unity indicates perfect agreement with the
analytical solution.  Values above and below unity
indicate error in the computed solution.  Results in
Table 2 indicate that all analyses are in good agreement
with the analytical solution.  The maximum error in any
of the computed solutions is approximately 5% and is
observed for the multiple-domain heterogeneous
modeling analysis (MD/HM) using combined finite
difference and finite element discretizations with the (6
× 6) mesh of grid points with coincident nodes along
the common boundary.  The maximum error in this
analysis is due to a combination of the discretization
error and error in the multifunctional approach for
combining the finite element and finite difference
meshes.

The error for the multiple-domain analyses using
combined finite difference and finite element
discretizations (MD/HM) with noncoincident grid
points along the common boundary is less than 3%.
The solution accuracy for each of the modeling
methods increases as the mesh refinement increases.
For the same number of nodes or grid points, the finite
element discretization yields more accurate solutions
than the finite difference discretization.

The results obtained for the single-domain
modeling (e.g., SD/FE and SD/FD) and the multiple-
domain homogeneous modeling with coincident nodes
along the subdomain boundary are identical or nearly
identical (see the results for (6 × 6), (11 × 11) and (21 ×
21) meshes in Table 2).  The results obtained for the
multiple-domain heterogeneous modeling approach
(MD/HM) with coincident grid points along the
subdomain boundary are less accurate than
corresponding results obtained using homogeneous
modeling (MD/FE and MD/FD) but are in overall good
agreement.  With multiple-domain modeling using
finite element  (MD/FE) discretization and with non-
coincident nodes, the twisting moment obtained is
bounded by the twisting moments obtained using the
less refined (11 × 11) and more refined (21 × 21)
coincident meshes (see the results for the (6 × 11)/(11 ×
21) mesh in Table 2).  For the multiple-domain finite
difference  (MD/FD) discretization in both domains

x

y

FE
or
FD

FE

x

y
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with non-coincident nodes, the twisting moment is
slightly less accurate than the results obtained using the
(11 × 11) coincident mesh, which is indicative of the
error introduced by the finite difference interface
constraints along the common boundary.  For the
heterogeneous modeling approach with coincident
nodes along the interface boundary, the twisting
moment is less accurate than the homogeneous
approach with either finite element modeling or finite
difference modeling.  These results reveal the error
introduced in the heterogeneous modeling approach for
this problem due to the interface constraints.  For the
heterogeneous modeling approach with non-coincident
nodes, the twisting moment is slightly more accurate
than the (11 × 11) coincident mesh, which is indicative
of the benefit gained (i.e., more accurate field
approximation and interface constraint) by the
combination of the finite element and finite difference
discretizations.

Concluding Remarks

Multifunctional methodologies have been
formulated for interfacing diverse domain idealizations
including multi-fidelity modeling and multiple spatial
modeling approaches.  The methods, based on the
method of weighted residuals, provide accurate
compatibility of primary and secondary variables across
domain interfaces as shown for several problems.  The
methodology has been described and demonstrated for
the illustrative problems.  These selected problems
include a verification test case and a second-order
problem of solid mechanics that can be formulated in
terms of one dependent variable.  The governing
equation in each case is either the Laplace or the
Poisson equation.  In all cases considered, the results
obtained using the multifunctional methodology were in

overall good agreement with the reported analytical or
reference solution.  The methods have been rigorously
developed for multiple-domain applications, and the
robustness and accuracy has been illustrated, and the
associated computational issues have been discussed.
Multi-fidelity modeling approaches have been
developed that include both homogeneous (i.e., the
same discretization method in each domain) and
heterogeneous (i.e., different discretization methods in
each domain) discretization approaches.  The finite
element and finite difference methods and combinations
thereof have been used in each of the discretization
approaches.  Results have been presented for the two-
dimensional scalar-field multifunctional formulation
using representative test problems in solid mechanics.
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